

Question #74184, Physics / Mechanics | Relativity

The end A of a uniform rod AB of weight W is hinged a fixed point. The rod is held in equilibrium in a horizontal position by means of a string attached to B and to a point C vertically above A. The string is inclined at 60 degrees to the rod. Find the tension in the string and the reaction of the hinge.

Solution

$$\sum M_A = 0;$$

$$T \sin 60^\circ \times (AB) - W \times \frac{AB}{2} = 0;$$

$$T = \frac{W}{2 \sin 60^\circ}$$

$$\sum F_x = 0;$$

$$R_{Ax} - T \cos 60^\circ = 0;$$

$$R_{Ax} = T \cos 60^\circ = \frac{W \cos 60^\circ}{2 \sin 60^\circ} = \frac{W}{2 \tan 60^\circ}$$

$$\sum F_y = 0;$$

$$R_{Ay} + T \sin 60^\circ - W = 0;$$

$$R_{Ay} = W - T \sin 60^\circ = W - \frac{W \sin 60^\circ}{2} = \frac{W}{2};$$

$$R_A = \sqrt{R_{Ax}^2 + R_{Ay}^2} = \sqrt{\frac{W^2}{4 \tan^2 60^\circ} + \frac{W^2}{4}} = \sqrt{\frac{W^2 \cot^2 60^\circ}{4} + \frac{W^2}{4}} = \frac{W}{2 \sin 60^\circ}$$

Answer: $T = \frac{W}{2 \sin 60^\circ}; R_A = \frac{W}{2 \sin 60^\circ}$

Answer provided by <https://www.AssignmentExpert.com>