Answer on Question 74120, Physics, Other

Question:

A mass is launched at 30° to the horizontal with initial speed $25 \mathrm{~m} / \mathrm{s}$.
a) What is the maximum height obtained?
b) After what time does the mass move a horizontal distance of 3 m .

Solution:

a) Let's first find the projections of the initial velocity of the mass on axis x and y :

$$
\begin{aligned}
v_{0 x} & =v_{0} \cos \alpha=25 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot \cos 30^{\circ}=21.65 \frac{\mathrm{~m}}{\mathrm{~s}} \\
v_{0 y} & =v_{0} \sin \alpha=25 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot \sin 30^{\circ}=12.5 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Let's consider the motion of the mass in the vertical direction. We can find the time $t_{\text {rise }}$ that the mass need to reach the maximum height from the kinematic equation:

$$
v=v_{0 y}-g t_{\text {rise }}
$$

here, $v_{0 y}$ is the projection of the initial velocity of the mass on axis $y, v=0$ is the velocity of the mass at maximum height, $g=-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ is the acceleration due to gravity.

Then, we get:

$$
t_{\text {rise }}=\frac{v_{0 y}}{g}=\frac{12.5 \frac{\mathrm{~m}}{\mathrm{~s}}}{9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=1.27 \mathrm{~s} .
$$

Finally, we can find the maximum height reached by the mass from another kinematic equation:
$y_{\max }=v_{0 y} t_{\text {rise }}-\frac{1}{2} g t_{\text {rise }}^{2}=12.5 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 1.27 \mathrm{~s}-\frac{1}{2} \cdot 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot(1.27 \mathrm{~s})^{2}=7.97 \mathrm{~m}$.
b) We can find the time that mass need to move a horizontal distance of 3 m from the kinematic equation:

$$
x=v_{0 x} t
$$

here, x is the distance, $v_{0 x}$ is the projection of the initial velocity of the mass on axis x, and t is time.

Then, we get:

$$
t=\frac{x}{v_{0 x}}=\frac{3.0 \mathrm{~m}}{21.65 \frac{\mathrm{~m}}{\mathrm{~s}}}=0.14 \mathrm{~s}
$$

Answer:

a) $y_{\max }=7.97 \mathrm{~m}$.
b) $t=0.14 \mathrm{~s}$.

