Answer on Question \#74114 Physics / Other

A uniform bridge, $L=0.043 \mathrm{~km}=43 \mathrm{~m}$ long and weighing $M=7.5 \times 10^{6} \mathrm{~kg}$, is supported by two pillars from each end. If a $m=3.6 \times 10^{4} \mathrm{~kg}$ truck is parked $l=0.015 \mathrm{~km}=15 \mathrm{~m}$ from the right pillar how much force does each pillar exert.

Solution:

At the equilibrium the total moment about points A and B is zero.
Moment equilibrium about the point A requires

$$
M g \frac{1}{2}+m g(L-l)-R_{B} L=0
$$

So

$$
R_{B}=\frac{M g}{2}+m g\left(1-\frac{l}{L}\right)=\frac{7.5 \times 10^{6} \times 9.8}{2}+3.6 \times 10^{4} \times 9.8\left(1-\frac{15}{43}\right)=3.69 \times 10^{7} \mathrm{~N}
$$

Moment equilibrium about the point B requires

$$
M g \frac{L}{2}+m g l-R_{A} L=0
$$

So

$$
R_{A}=\frac{M g}{2}+m g \frac{l}{2}=\frac{7.5 \times 10^{6} \times 9.8}{2}+3.6 \times 10^{4} \times 9.8 \times \frac{15}{43}=3.68 \times 10^{7} \mathrm{~N}
$$

Answer:

$R_{B}=3.69 \times 10^{7} \mathrm{~N}$
$R_{A}=3.68 \times 10^{7} \mathrm{~N}$
Answer provided by https://www.AssignmentExpert.com

