Answer on Question \#74107 Physics / Mechanics | Relativity

A car starts at rest and acquires a velocity of 70 km per hour in 30 min . Find the car's acceleration and find the distance traveled in the first 20 min and find the distance traveled in the next 20 more min.

Solution:

The acceleration

$$
\begin{gathered}
a=\frac{\Delta v}{\Delta t} \\
a=\frac{70 \mathrm{~km} / \mathrm{hr}-0 \mathrm{~km} / \mathrm{hr}}{0.5 \mathrm{hr}}=140 \mathrm{~km} / \mathrm{hr}^{2}
\end{gathered}
$$

The distance traveled in the first 20 min

$$
\begin{gathered}
s=v_{0} t+\frac{a t^{2}}{2} \\
s=0 \times \frac{1}{3}+\frac{140 \times\left(\frac{1}{3}\right)^{2}}{2}=7.78 \mathrm{~km}
\end{gathered}
$$

The distance traveled in the first 30 min

$$
s=0 \times \frac{1}{2}+\frac{140 \times\left(\frac{1}{2}\right)^{2}}{2}=17.50 \mathrm{~km}
$$

So, the distance traveled in the next 20 more min

$$
17.50 \mathrm{~km}-7.78 \mathrm{~km}=9.72 \mathrm{~km}
$$

Answers:

$140 \frac{\mathrm{~km}}{\mathrm{hr}^{2}}$
7.78 km
9.72 km

Answer provided by https://www.AssignmentExpert.com

