Answer on Question \#74100, Physics / Mechanics | Relativity

The volume of an air bubble become three times as it rises from the bottom of a lake to its surface. Assuming atmospheric pressure to be 75 cm of Hg and density of water to be $1 / 10$ of the density of mercury, the depth of the lake.

Solution:

Pressure at the bottom of lake,

$$
P_{1}=\text { Atmospheric pressure }+ \text { pressure due to water column in the lake }
$$

$$
P_{1}=75 \times \rho_{H g} \times g+h \times \rho_{w} \times g
$$

Volume of bubble at the bottom, $\mathrm{V}_{1}=\mathrm{V}$
Volume of bubble at the surface, $\mathrm{V}_{2}=2 \mathrm{~V}$
Pressure at the surface

$$
\begin{gathered}
P_{2}=\text { Atmospheric pressure } \\
P_{2}=75 \times \rho_{H g} \times g
\end{gathered}
$$

From Boyle's law,

$$
\begin{gathered}
P_{1} V_{1}=P_{2} V_{2} \\
\left(75 \times \rho_{H g} \times g+h \times \rho_{w} \times g\right) \times V=75 \times \rho_{H g} \times g \times 2 V \\
h=75 \times\left(\rho_{H g} / \rho_{w}\right) \\
h=75 \mathrm{~cm} \times\left(\frac{13.56 \mathrm{~g} / \mathrm{cm}^{3}}{13.56 \mathrm{~g} / \mathrm{cm}^{3} \times 1 / 10}\right) \\
h=75 \mathrm{~cm} \times 10=750 \mathrm{~cm}=7.5 \mathrm{~m}
\end{gathered}
$$

Answer: 7.5 m
Answer provided by https://www.AssignmentExpert.com

