

Answer on Question#74093 – Physics – Mechanics

A ball having a mass of 0.5 kg is moving towards the east with a speed of 8.0 ms⁻¹. After being hit by a bat it changes its direction and starts moving towards the north with a speed of 6.0 ms⁻¹. If the time of impact is 0.1 s, calculate the impulse and average force acting on the ball.

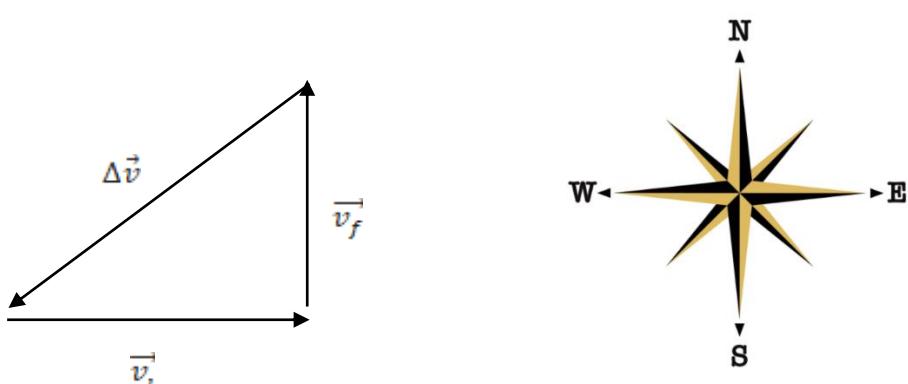
Solution.

We use the concept of linear momentum

$$\vec{p} = m\vec{v}$$

where m is a mass of the ball, \vec{v} is a velocity of the ball. (for our case)

By definition impulse is the change in momentum. Hence we can write


$$\Delta\vec{p} = \vec{p}_f - \vec{p}_i = m\Delta\vec{v} = m(\vec{v}_f - \vec{v}_i)$$

where \vec{p}_f is final momentum, \vec{p}_i is initial momentum, \vec{v}_f is final velocity, \vec{v}_i is initial velocity.

According to the condition of problem

$\vec{v}_i = 8.0 \frac{m}{s}$ directed towards the east; $\vec{v}_f = 6.0 \frac{m}{s}$ directed towards the north; $m = 0.5 \text{ kg}$ is a mass of the ball.

Draw a speed sketch

From a right triangle we find the magnitude of the vector $\Delta\vec{v}$

$$|\Delta\vec{v}| = \sqrt{|\vec{v}_i|^2 + |\vec{v}_f|^2} = \sqrt{8^2 + 6^2} = \sqrt{64 + 36} = \sqrt{100} = 10 \frac{m}{s}.$$

Therefore impulse

$$\Delta\vec{p} = m\Delta\vec{v} = 0.5 \text{ kg} \cdot 10 \frac{m}{s} = 5 \text{ kg} \cdot \frac{m}{s}.$$

On the other hand, we can calculate the impulse as

$$\Delta\vec{p} = \vec{F}t$$

where \vec{F} is average force acting on the ball, $t = 0.1 \text{ s}$ is time of impact. Hence

$$\vec{F} = \frac{\Delta\vec{p}}{t} = \frac{5 \text{ kg} \cdot \frac{m}{s}}{0.1 \text{ s}} = 50 \text{ N}$$

Answer. $\Delta\vec{p} = 5 \text{ kg} \cdot \frac{m}{s}$; $\vec{F} = 50 \text{ N}$.