Answer on Question \#74092, Physics / Mechanics | Relativity |

a wheel has a moment of inertia of 2.0 kgm 2 about its axis of rotation. It is rotating with an angular speed of 50 rpm . Calculate the torque that can stop the wheel in one minute. Also calculate work done by the torque in this time.
Answer:
We have:
moment of inertia $I=2.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}$;
angular velocity $\omega=50 \mathrm{rpm}=\frac{50 \cdot 2 \pi}{60} \frac{\mathrm{rad}}{\mathrm{s}}=\frac{5 \pi}{3} \frac{\mathrm{rad}}{\mathrm{s}}$;
timet $=1 \mathrm{~m}=60 \mathrm{~s}$.
The angular momentum of the wheel is $L=I \omega=\frac{10 \pi}{3} \frac{\mathrm{~kg} \cdot \mathrm{~m}^{2}}{\mathrm{~s}}$.
The torgue is $\tau=\frac{\Delta L}{\Delta t}=\frac{L}{t}=\frac{\pi}{18} \frac{\mathrm{k} \cdot \mathrm{m}^{2}}{\mathrm{~s}^{2}}$.
Work done by the torque in this time is

$$
W=\frac{I \omega^{2}}{2}=\frac{25 \pi^{2}}{9} J
$$

Answer provided by https://www.AssignmentExpert.com

