Question. A hot air balloon is rising straight up at a constant speed of $7.0 \mathrm{~m} / \mathrm{s}$. When the balloon is 12.0 m above the ground, a gun fires a pellet straight up from ground level with an initial speed of $30.0 \mathrm{~m} / \mathrm{s}$. Along the paths of the balloon and the pellet, there are 2 places where each of them has the same altitude at the same time. How far above the ground are these 2 places?

Given. $v=7.0 \mathrm{~m} / \mathrm{s} ; h_{0}=12.0 \mathrm{~m} ; u=30.0 \mathrm{~m} / \mathrm{s}$.
Find. $h_{1}, h_{2}-$ ?

## Solution.

For a hot air balloon

$$
h=h_{0}+v t .
$$

For a pellet

$$
\begin{gathered}
s=u t-\frac{g t^{2}}{2} . \\
h=s \rightarrow h_{0}+v t=u t-\frac{g t^{2}}{2} \\
12+7 t=30 t-\frac{9.8 t^{2}}{2} \rightarrow 4.9 t^{2}-23 t+12=0 \Rightarrow t_{1}=0.6 \mathrm{~s} ; t_{2}=4.1 \mathrm{~s} .
\end{gathered}
$$

Hence

$$
\begin{aligned}
& h_{1}=12+7 \cdot 0.6=16.2 \mathrm{~m} \\
& h_{2}=12+7 \cdot 4.1=40.7 \mathrm{~m}
\end{aligned}
$$

Answer. $h_{1}=16.2 \mathrm{~m} ; h_{2}=40.7 \mathrm{~m}$.
Answer provided by https://www.AssignmentExpert.com

