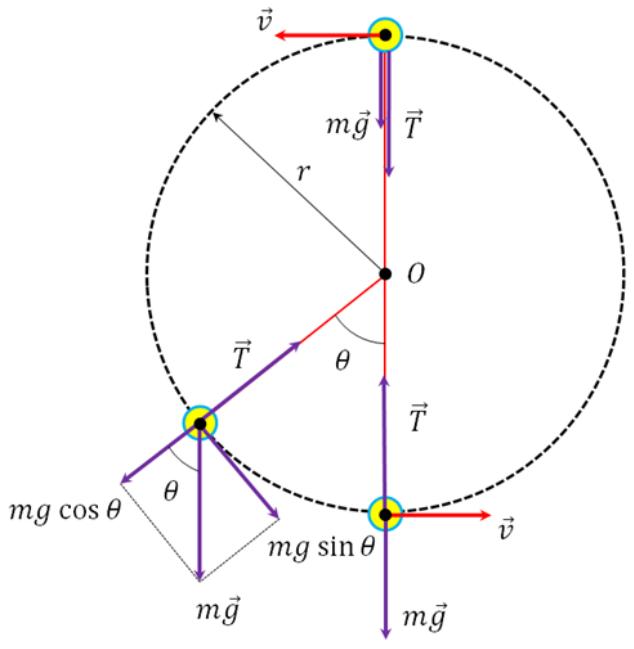


Question. One end of a cord is fixed and a small 0.500 kg object is attached to the other end, where it swings in a section of a vertical circle of radius 2.00 m as shown in the Figure. When $\theta = 20.0^\circ$, the speed of the object is 8.00 m/s . At this instant, find


- (a) the tension in the string;
- (b) the tangential and radial components of acceleration, and
- (c) the total acceleration.

Solution.

Given. $m = 0.500 \text{ kg}$; $r = 2.00 \text{ m}$; $\theta = 20.0^\circ$; $v = 8.00 \text{ m/s}$.

Find. $T, a_n, a_t, a - ?$

Solution.

(a) the tension in the string

According to the Second Newton's law

$$\sum \vec{F} = m\vec{a}.$$

We have

$$T - mg \cos \theta = m \frac{v^2}{r} \rightarrow T = m \frac{v^2}{r} + mg \cos \theta = 0.5 \cdot \frac{8^2}{2} + 0.5 \cdot 9.81 \cdot \cos 20^\circ = 20.609 \text{ N}$$

(b) the tangential and radial components of acceleration

the tangential component

$$mg \sin \theta = ma_\tau \rightarrow a_\tau = g \sin \theta = 9.81 \cdot \sin 20^\circ = 3.35 \text{ m/s}^2.$$

the radial component

$$a_n = \frac{v^2}{r} = \frac{8^2}{2} = 32 \text{ m/s}^2.$$

(c) the total acceleration

$$a = \sqrt{a_n^2 + a_\tau^2} = \sqrt{32^2 + 3.35^2} = 32.2 \text{ m/s}^2.$$

Answer. $T = 20.609 \text{ N}$; $a_\tau = 3.35 \text{ m/s}^2$; $a_n = 32 \text{ m/s}^2$; $a = 32.2 \text{ m/s}^2$.

Answer provided by <https://www.AssignmentExpert.com>