Question. A racing car of 1000 kg moves round a banked track at a constant speed of $108 \mathrm{~km} / \mathrm{h}$. Assuming the total reaction at the wheels is normal to the track, and the horizontal radius of the track is 100 m , calculate the angle of inclination of the track to the horizontal and the reaction of the wheels.

Solution.

Given. $m=1000 \mathrm{~kg} ; v=108 \mathrm{~km} / \mathrm{h}=30 \mathrm{~m} / \mathrm{s} ; r=100 \mathrm{~m}$.
Find. $\alpha, R-$?

Solution.

Applying Newton's second law, we write

$$
+\uparrow \sum F_{y}=0: R \cos \alpha-m g=0 \rightarrow R=\frac{m g}{\cos \alpha} .
$$

$\xrightarrow{+} \sum F_{x}=m a_{n}: R \sin \alpha=m \frac{v^{2}}{r} \rightarrow \frac{m g}{\cos \alpha} \sin \alpha=m \frac{v^{2}}{r} \rightarrow \operatorname{tg} \alpha=\frac{v^{2}}{g r}$.

$$
\begin{gathered}
\alpha=\operatorname{arctg} \alpha=\operatorname{arctg} \frac{v^{2}}{g r}=\operatorname{arctg} \frac{30^{2}}{9.81 \cdot 100}=42.53^{\circ} . \\
R=\frac{m g}{\cos \alpha}=\frac{1000 \cdot 9.81}{\cos 42.53^{\circ}}=13312 \mathrm{~N} .
\end{gathered}
$$

Answer. $\alpha=42.53^{\circ} ; R=13312 N$.
Answer provided by https://www.AssignmentExpert.com

