Answer on Question \#73875, Physics / Mechanics | Relativity

Question. An inquisitive physics student and mountain climber climbs a $S=50 \mathrm{~m}$ cliff that overhangs a calm pool of water. He throws two stones vertically downwards $t_{0}=1 \mathrm{~s}$ apart and observes that they cause a single splash. The first stone has an initial velocity of $v_{01}=2 \mathrm{~m} / \mathrm{s}$.
(a) At what time Δt after release of the first stone will the two stones hit the water?
(b) What is the initial velocity v_{02} that the second stone should have if they are to hit simultaneously?
(c) What will the velocity v_{1}, v_{2} of each stone be at the instant they hit the water?

Solution.

For the first stone

$$
S=v_{01} \Delta t+\frac{g \Delta t^{2}}{2}
$$

For the second stone

$$
S=v_{02}\left(\Delta t-t_{0}\right)+\frac{g\left(\Delta t-t_{0}\right)^{2}}{2}
$$

(a) At what time Δt after release of the first stone will the two stones hit the water?

$$
S=v_{01} \Delta t+\frac{g \Delta t^{2}}{2} \rightarrow 50=2 \Delta t+9.8 \cdot \frac{\Delta t^{2}}{2} \rightarrow 9.8 \Delta t^{2}+4 \Delta t-100=0 \rightarrow \Delta t \approx 3 \mathrm{~s}
$$

(b) What is the initial velocity v_{02} that the second stone should have if they are to hit simultaneously?

$$
S=v_{02}\left(\Delta t-t_{0}\right)+\frac{g\left(\Delta t-t_{0}\right)^{2}}{2} \rightarrow 50=v_{02}(3-1)+\frac{9.8 \cdot(3-1)^{2}}{2} \rightarrow v_{02}=15.2 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

(c) What will the velocity v_{1}, v_{2} of each stone be at the instant they hit the water?

$$
\begin{gathered}
v_{1}=v_{01}+g \Delta t=2+9.8 \cdot 3=31.4 \frac{\mathrm{~m}}{\mathrm{~s}} . \\
v_{2}=15.2+9.8 \cdot(3-1)=34.8 \frac{\mathrm{~m}}{\mathrm{~s}} .
\end{gathered}
$$

Answer. $\Delta t \approx 3 \mathrm{~s} ; v_{02}=15.2 \mathrm{~m} / \mathrm{s} ; v_{1}=31.4 \frac{\mathrm{~m}}{\mathrm{~s}} ; v_{2}=34.8 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Answer provided by https://www.AssignmentExpert.com

