Answer on Question \#73860-Physics-Field Theory

Two particles are held 1.0 mm apart. One particle has a mass of $1.0 \times 10-5 \mathrm{~kg}$ and a net charge of $+3.2 \times 10-10$ C. The other particle has a mass of $2.0 \times 10-5 \mathrm{~kg}$ and a net charge of $+4.8 \times 10-10 \mathrm{C}$. If the two particles are released, what will their speeds be when they are 2.0 mm apart?

Solution

From the conservation of energy:

$$
\begin{aligned}
& \frac{k q_{1} q_{2}}{r_{1}}=\frac{k q_{1} q_{2}}{r_{2}}+\frac{M V^{2}}{2} \\
& \frac{\mu V^{2}}{2}=k q_{1} q_{2}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)
\end{aligned}
$$

The speed of center of the mass is

$$
V=\sqrt{\left(m_{1}+m_{2}\right) \frac{2 k q_{1} q_{2}}{m_{1} m_{2}}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)}
$$

The speed of first particle is

$$
\begin{aligned}
v_{1}=\frac{m_{2}}{\left(m_{1}+m_{2}\right)} & V=\sqrt{\frac{2 k q_{1} q_{2} m_{2}}{\left(m_{1}+m_{2}\right) m_{1}}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)} \\
& =\sqrt{\frac{2\left(9 \cdot 10^{9}\right)\left(3.2 \cdot 10^{-10}\right)\left(4.8 \cdot 10^{-10}\right)\left(2 \cdot 10^{-5}\right)}{\left(1 \cdot 10^{-5}+2 \cdot 10^{-5}\right) 1 \cdot 10^{-5}}\left(\frac{1}{0.001}-\frac{1}{0.002}\right)}=0.30 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

The speed of second particle is

$$
\begin{aligned}
v_{2}=\frac{m_{1}}{\left(m_{1}+m_{2}\right)} & V=\sqrt{\frac{2 k q_{1} q_{2} m_{1}}{\left(m_{1}+m_{2}\right) m_{2}}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)} \\
& =\sqrt{\frac{2\left(9 \cdot 10^{9}\right)\left(3.2 \cdot 10^{-10}\right)\left(4.8 \cdot 10^{-10}\right)\left(1 \cdot 10^{-5}\right)}{\left(1 \cdot 10^{-5}+2 \cdot 10^{-5}\right) 2 \cdot 10^{-5}}\left(\frac{1}{0.001}-\frac{1}{0.002}\right)}=0.15 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Answer provided by https://www.AssignmentExpert.com

