

Answer on Question #73802, Physics / Electric Circuits

State and explain the boundary condition for the displacement vector \mathbf{D} at the boundary separating two dielectric media.

Answer:

By definition, displacement vector:

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P} = \epsilon \epsilon_0 \vec{E}$$

Where:

\vec{E} – electric field, \vec{P} – polarization vector, ϵ_0 – vacuum permittivity, ϵ – relative permittivity

Boundary conditions for a displacement vector:

$$(\vec{D}_1 - \vec{D}_2) \vec{n} = \sigma_{surf}$$

Here, σ_{surf} – free charge density on the surface,

\vec{n} – normal vector in the direction from medium 1 to medium 2

Physically, this means that on the boundary of two surfaces free charges appear. Their surface density is determined by the difference of displacement vectors normal projection.

If two surfaces has equal normal projections of displacement vector, no free charges appear on the boundary

Answer provided by <https://www.AssignmentExpert.com>