Answer on Question 73798, Physics, Other

Question:

A marble rolls off horizontally from the edge of tabletop 1.50 m above the floor. It strikes the floor 2.0 m from the base of the table.
a) how long it takes marble to reach the floor?
b) what is it initial velocity?

Solution:

a) We can find the time that the marble takes to reach the floor from the kinematic equation:

$$
y=v_{0 y} t+\frac{1}{2} g t^{2},
$$

here, $y=1.50 \mathrm{~m}$ is the height of the tabletop, $v_{0 y}=0$ is the initial vertical velocity of the marble, $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ is the acceleration due to gravity(we choose the downwards as the positive direction, therefore, the acceleration due to gravity will be positive).

Then, we get:

$$
\begin{gathered}
y=\frac{1}{2} g t^{2}, \\
t=\sqrt{\frac{2 y}{g}}=\sqrt{\frac{2 \cdot 1.50 \mathrm{~m}}{9.8 \frac{m}{s^{2}}}}=0.55 \mathrm{~s} .
\end{gathered}
$$

b) We can find the initial velocity of the marble from the formula:

$$
x=v_{0 x} t,
$$

here, $x=2.0 \mathrm{~m}$ is the distance from the base of the table, $v_{0 x}$ is the initial horizontal velocity of the marble, t is time that the marble takes to reach the floor.

Then, we get:

$$
v_{0 x}=\frac{x}{t}=\frac{2.0 \mathrm{~m}}{0.55 \mathrm{~s}}=3.64 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Answer:

a) $t=0.55 \mathrm{~s}$.
b) $v_{0 x}=3.64 \frac{\mathrm{~m}}{\mathrm{~s}}$.

