Question. Crate is moved across the floor by pulling a rope tied to it. The force on the crate is of magnitude 450 N and is directed at an angle of 60° to the horizontal. The force of friction on the crate is 125 N . The mass of the crate is 300 kg . Draw the free body diagram for the system and calculate the acceleration of the crate. Calculate the work done by each of the forces in displacing the crate by 5.0 m . Which of these forces is a "no-work" force?

Solution.

According to the second Newton's low

$$
\vec{F}=m \vec{a} .
$$

So

$$
\begin{gathered}
\sum F_{x}=m a \\
F \cos \alpha-F_{f}=m a \rightarrow a=\frac{F \cos \alpha-F_{f}}{m}=\frac{450 \cdot \cos 60^{\circ}-125}{300}=0.33 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} . \\
\sum F_{y}=0 . \\
N+F \sin \alpha-F_{g}=0 \rightarrow N+450 \cdot \sin 60^{\circ}-300 \cdot 9.8=0 \rightarrow \quad N=2940-390=2550 \mathrm{~N} . \\
A=(\vec{F} \cdot \vec{r})=F \cdot r \cdot \cos \alpha=450 \cdot 5 \cdot \cos 60^{\circ}=1125 \mathrm{~J} . \\
A_{f}=\left(\vec{F}_{f} \cdot \vec{r}\right)=F_{f} \cdot r \cdot \cos 180^{\circ}=125 \cdot 5 \cdot(-1)=-625 \mathrm{~J} .
\end{gathered}
$$

\vec{N} and \vec{F}_{g} are"no-work" forces.
Answer. $a=0.33 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} ; A=1125 \mathrm{~J} ; A_{f}=-625 \mathrm{~J}$.
Answer provided by https://www.AssignmentExpert.com

