Answer on Question \#73702, Physics / Other

An electron and a proton moving with equal velocity enter a region of uniform perpendicular magnetic field. Calculate the ratio of the radii of their circular paths in the field.

Solution:

The Lorentz magnetic force supplies the centripetal force, so:

$$
q v B=\frac{m v^{2}}{r}
$$

Thus, the radius is

$$
r=\frac{m v}{q B}
$$

The mass of the electron is $\mathrm{m}=9 \times 10^{-31} \mathrm{~kg}$
Mass of proton: Mass of proton is 1.0072766 a.m.u. or $1.6726 \times 10^{-27} \mathrm{~kg}$.
Comparative mass: Proton is 1837 times heavier than an electron.
The electronic charge is $\mathrm{e}=\mathrm{p}=1.6 \times 10^{-19} \mathrm{C}$
So, q, v and B are equal.

$$
\frac{r_{p}}{r_{e}}=\frac{m_{p}}{m_{e}}=1837
$$

Answer: 1837.
Answer provided by https://www.AssignmentExpert.com

