

Answer on Question # 73682, Physics- Mechanics -Relativity:

Question: At a crossing a truck travelling towards the north collides with a car travelling towards the east. After the collision the car and the truck stick together and move off at an angle of 30° east of north. If the speed of the car before the collision was 20 ms^{-1} , and the mass of the truck is twice the mass of the car, calculate the speed of the truck before and after the collision.

Solution: Let us consider mass of car is m and v_i be the velocity before collision. And after collision together velocity is v . So, as per question given mass of the truck is $2m$ and v_t be its velocity before collision.

Let us apply momentum conservation law,

$$2m \times v_t = (2m + m)v \cos 30^{\circ} \quad \text{and} \quad m \times 20 = (2m + m)v \sin 30^{\circ}$$

$$\text{Or, } v_t = 1.5 v (0.866) \quad \dots \dots \dots (1)$$
$$\dots \dots \dots (2)$$
$$\text{or, } v = 13.33 \text{ m/s (as } \sin 30^{\circ} = 0.5)$$

Put the value of v from equation (2) to equation (1), we get,

$$v_t = 17.32 \text{ m/s.}$$

Answer: Speed of the truck before and after collisions are 17.32 m/s and 13.33 m/s respectively.

Answer provided by <https://www.AssignmentExpert.com>