Answer on Question \#73654, Physics / Other

Locate the centre of mass $\mathrm{Rcm}(\mathrm{Xcm}, \mathrm{Ycm})$ of four particles, $\mathrm{M} 1=2.0 \mathrm{~kg}, \mathrm{M} 2=6.0 \mathrm{~kg}, \mathrm{M} 3=8.0 \mathrm{~kg}$ and $M 4=10.0 \mathrm{~kg}$ located at the coordinate points: $(-1,7),(5,11),(8,-4)$, and $(-3,6)$ respectively, where the coordinates are given in metres.

Solution:

The centre of mass for x-direction is

$$
\begin{gathered}
x_{c m}=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}+m_{4} x_{4}}{m_{1}+m_{2}+m_{3}+m_{4}} \\
x_{c m}=\frac{2.0 \times(-1)+6.0 \times(5)+8.0 \times(8)+10.0 \times(-3)}{2.0+6.0+8.0+10.0}=2.38 \mathrm{~m}
\end{gathered}
$$

The centre of mass for y-direction is

$$
\begin{gathered}
y_{c m}=\frac{m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3}+m_{4} y_{4}}{m_{1}+m_{2}+m_{3}+m_{4}} \\
y_{c m}=\frac{2.0 \times(7)+6.0 \times(11)+8.0 \times(-4)+10.0 \times(6)}{2.0+6.0+8.0+10.0}=4.15 \mathrm{~m}
\end{gathered}
$$

So,

$$
R_{c m}\left(x_{c m}, y_{c m}\right)=(2.38,4.15)
$$

Answer: (2.38, 4.15).
Answer provided by https://www.AssignmentExpert.com

