Answer on Question 73645, Physics / Mechanics | Relativity

Question

A sinusoidal wave is described by $\mathrm{y}(\mathrm{x}, \mathrm{t})=3.0 \sin (5.95 \mathrm{t}-4.20 \mathrm{x}) \mathrm{cm}$ where x is the position along the wave propagation. Determine the amplitude, wave number, wavelength, frequency and velocity of the wave. (express in answer in meters not centimeter)

Solution. In the general case a sinusoidal wave is described by
$y(x, t)=y_{0} \sin (\omega t-k x)$
where y_{0} is the amplitude, ω is the angular frequency, is the wave number
In this problem we have
$y(x, t)=3 \sin (5.95 t-4.20 x)$
Then we get:
the amplitude of the wave is $y_{0}=3.0 \mathrm{~cm}=0.03 \mathrm{~m}$
the wave number of the wave is $k=4.20 \mathrm{~cm}^{-1}=420 \mathrm{~m}^{-1}$
the wavelength of the wave is $\lambda=\frac{2 \pi}{k}=\frac{2 \pi}{420 m^{-1}}=0.015 \mathrm{~m}$
the angular frequency of the wave is $\omega=5.95 \mathrm{~s}^{-1}$
the frequency of the wave is $f=\frac{\omega}{2 \pi}=\frac{5.95 \mathrm{~s}^{-1}}{2 \pi}=0.95 \mathrm{~Hz}$
the velocity of the wave is $v=\frac{\omega}{k}=\frac{5.95 \mathrm{~s}^{-1}}{420 \mathrm{~m}^{-1}}=0.014 \mathrm{~m} / \mathrm{s}$
Answer: the amplitude, wave number, wavelength, frequency and velocity of the wave are
$y_{0}=0.03 \mathrm{~m}$
$k=420 \mathrm{~m}^{-1}$
$\lambda=0.015 \mathrm{~m}$
$f=0.95 \mathrm{~Hz}$
$v=0.014 \mathrm{~m} / \mathrm{s}$
Answer provided by https://www.AssignmentExpert.com

