Answer on Question \#73641 Physics / Optics

The distance between an object and a screen is 98 cm . A convex lens placed between object and screen so as it get an image on the screen magnified 12 times. Calculate the focal length and power of lens.

Solution:

For a thin lens the focal length f is given by equation

$$
\frac{1}{f}=\frac{1}{u}+\frac{1}{v}
$$

where u is the distance from the object to the lens, v is the distance from the lens to the image (screen).

In our case

$$
\left\{\begin{array}{l}
u+v=0.98 \mathrm{~m} \\
\frac{v}{u}=12
\end{array}\right.
$$

We get

$$
u=0.075 \mathrm{~m}, \quad v=0.905 \mathrm{~m}
$$

Thus

$$
\begin{gathered}
\frac{1}{f}=\frac{1}{0.075}+\frac{1}{0.905} \\
f=0.07 \mathrm{~m}
\end{gathered}
$$

The power of lens

$$
P=\frac{1}{f}=\frac{1}{0.07}=14.4 \mathrm{~m}^{-1}
$$

Answers:

$$
\begin{aligned}
& f=0.07 \mathrm{~m} \\
& P=14.4 \mathrm{~m}^{-1}
\end{aligned}
$$

Answer provided by https://www.AssignmentExpert.com

