## Answer on Question \#73582, Physics / Other

show that an arbitrary reciprocal lattice vector $g=h a 1+k a 2+a 3$ is perpendicular to the family of planes denoted by in the direct lattice space

## Solution:

Consider a plane $h k l$ in a crystal lattice.
We will prove that the reciprocal lattice vector $\boldsymbol{G}=h \boldsymbol{b}_{\mathbf{1}}+k \boldsymbol{b}_{\mathbf{2}}+\boldsymbol{l} \boldsymbol{b}_{\mathbf{3}}$ is perpendicular to this plane.

To prove that the reciprocal lattice vector $\boldsymbol{G}=h \boldsymbol{b}_{\mathbf{1}}+k \boldsymbol{b}_{\mathbf{2}}+l \boldsymbol{b}_{\mathbf{3}}$ is perpendicular to this plane, it suffices to show that $\boldsymbol{G}$ is perpendicular to two nonparallel vectors in this plane.

For the plane ( $h k l$ ), it intercepts axis $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}$, and $\boldsymbol{a}_{3}$ at a ratio $\frac{1}{h}: \frac{1}{k}: \frac{1}{l}$.


The two vectors in the plane can be chosen as $\boldsymbol{A}=\left(\frac{1}{h} \boldsymbol{a}_{\mathbf{1}}-\frac{1}{k} \boldsymbol{a}_{\mathbf{2}}\right)$ and $\boldsymbol{B}=\left(\frac{1}{h} \boldsymbol{a}_{\mathbf{1}}-\frac{1}{l} \boldsymbol{a}_{\mathbf{3}}\right)$.
Obviously, they are not parallel to each other.
Recall that $\boldsymbol{b} \cdot \boldsymbol{a}=2 \pi \delta_{i j}$, we have from direct calculation:

$$
\begin{gathered}
\boldsymbol{G} \cdot \boldsymbol{A}=\boldsymbol{G} \cdot\left(\frac{1}{h} \boldsymbol{a}_{\mathbf{1}}-\frac{1}{k} \boldsymbol{a}_{2}\right)=\left(h \boldsymbol{b}_{1}+k \boldsymbol{b}_{2}+l \boldsymbol{b}_{3}\right) \cdot\left(\frac{1}{h} \boldsymbol{a}_{\mathbf{1}}-\frac{1}{k} \boldsymbol{a}_{\mathbf{2}}\right)= \\
=h \boldsymbol{b}_{\mathbf{1}} \frac{\boldsymbol{a}_{\mathbf{1}}}{h}-k \boldsymbol{b}_{\mathbf{2}} \frac{\boldsymbol{a}_{\mathbf{2}}}{k}=2 \pi-2 \pi=0 \\
\boldsymbol{G} \cdot \boldsymbol{B}=\boldsymbol{G} \cdot\left(\frac{1}{h} \boldsymbol{a}_{\mathbf{1}}-\frac{1}{l} \boldsymbol{a}_{\mathbf{3}}\right)=\left(h \boldsymbol{b}_{\mathbf{1}}+k \boldsymbol{b}_{\mathbf{2}}+l \boldsymbol{b}_{3}\right) \cdot\left(\frac{1}{h} \boldsymbol{a}_{\mathbf{1}}-\frac{1}{l} \boldsymbol{a}_{\mathbf{3}}\right)= \\
=l \boldsymbol{b}_{3} \frac{\boldsymbol{a}_{3}}{l}-k \boldsymbol{b}_{\mathbf{2}} \frac{\boldsymbol{a}_{2}}{k}=2 \pi-2 \pi=0
\end{gathered}
$$

Therefore $\boldsymbol{G} \perp \boldsymbol{A}$ and $\boldsymbol{G} \perp B$ so $\boldsymbol{G}$ is perpendicular to the (hkl) plane.
Answer provided by https://www.AssignmentExpert.com

