Answer on Question \#73564, Physics / Molecular Physics | Thermodynamics

Question. A slab having a thickness of 4 cm and measuring 25 cm on a side has a $40^{\circ} \mathrm{C}$ temperature difference between its faces. How much heat flows through its per hour? $k=0.0025 \frac{\mathrm{cal}}{\left(\mathrm{cm} \cdot \mathrm{s} \cdot{ }^{\circ} \mathrm{C}\right)}$.

Given. $\Delta l=4 \mathrm{~cm} ; S=25 \times 25 \mathrm{~cm} ; \Delta T=40^{\circ} \mathrm{C} ; k=0.0025 \frac{\mathrm{cal}}{\left(\mathrm{cm} \cdot \mathrm{s}^{\circ} \mathrm{C}\right)} ; t=3600 \mathrm{~s}$.
Find. Q

Solution.

According to the equation of thermal conductivity

$$
Q=k \cdot \frac{\Delta T}{\Delta l} \cdot S \cdot t
$$

we have

$$
Q=k \cdot \frac{\Delta T}{\Delta l} \cdot S \cdot t=0.0025 \cdot \frac{40}{4} \cdot(25 \times 25) \cdot 3600=56.25 \mathrm{kcal} .
$$

Answer. $Q=56.25 \mathrm{kcal}$.
Answer provided by https://www.AssignmentExpert.com

