Answer on Question \#73561, Physics - Mechanics, Relativity

Question:

A boat entered a marina with an initial velocity of $2.58 \mathrm{~m} / \mathrm{s}$ [W 25.0 N]. over an interval of 4.00 s the captain turned the boat towards a dock while they slowed the boat to a final velocity of 1.15 m / s. what was the average acceleration of the boat during the parking sequence?

Solution:

Using formula below:

$$
\mathrm{v}=\mathrm{v}_{0}+a \cdot t
$$

where $v=1.15 \mathrm{~m} / \mathrm{s}, v_{0}=2.58 \mathrm{~m} / \mathrm{s}, \mathrm{t}=4 \mathrm{~s}$, we got:

$$
a=\frac{\mathrm{v}-\mathrm{v}_{0}}{t}=\frac{1.15-2.58}{4}=-0.3575\left(\mathrm{~m} / \mathrm{s}^{2}\right)
$$

Answer: $\mathrm{a}=-0.3575 \mathrm{~m} / \mathrm{s}^{2}$
Answer provided by https://www.AssignmentExpert.com

