Question. Two particle A and B executing SHM along same straight line with same amplitude and same mean position. A start its motion from mean position and move toward positive extreme while B starts from negative extreme position. Angular frequency of A is ω_A and that of B is ω_B choose the incorrect statement

A) if $\omega_A = 2\omega_B$ then when they meet first their velocity will be zero.

B) if $\omega_A > 2\omega_B$ then when they meet first time their velocity are in same direction.

C) if $\omega_A < 2\omega_B$ then when they meet their velocity will be in same direction.

D) their velocity when they meet does not depend on ω .

Solution.

A) if $\omega_A = 2\omega_B$ then when they meet first their velocity will be zero. Assume that

$$x_A(t) = \sin(\omega_A t),$$

$$x_B(t) = \sin\left(\omega_B t - \frac{\pi}{2}\right)$$

So

$$v_A(t) = \frac{dx_A(t)}{dt} = \omega_A \cos(\omega_A t),$$

$$v_B(t) = \frac{dx_B(t)}{dt} = \omega_B \cos\left(\omega_B t - \frac{\pi}{2}\right),$$

If $x_A(t) = x_B(t)$ and $\omega_A = 2\omega_B$ then

$$\sin(\omega_A t) = \sin\left(\omega_B t - \frac{\pi}{2}\right) \rightarrow \quad \sin(2\omega_B t) = \sin\left(\omega_B t - \frac{\pi}{2}\right) \rightarrow$$
$$\sin(2\omega_B t) - \sin\left(\omega_B t - \frac{\pi}{2}\right) = 0$$

The solution of this equation is $\omega_B t = \frac{2\pi n}{3} + \frac{\pi}{2}$, $n \in \mathbb{Z}$. Hence

 $v_A(t) = \omega_A \cos(\omega_A t) = 2\omega_B \cos(2\omega_B t) = -2\omega_B.$

$$v_B(t) = \omega_B \cos\left(\frac{\pi}{2} - \frac{\pi}{2}\right) = \omega_B$$

In fig. $\omega_B = 3 rad/s^2$ and $\omega_A = 6 rad/s^2$.

Answer. The statement is incorrect.

B) If $\omega_A > 2\omega_B$ then when they meet first time their velocity are in same direction.

Answer. The statement is incorrect.

C) if $\omega_A < 2\omega_B$ then when they meet their velocity will be in same direction.

Answer. The statement is correct.

D) Their velocity when they meet does not depend on ω .

The velocity when they meet depend on ω (see A)).

Answer. The statement is incorrect.

Answer provided by https://www.AssignmentExpert.com