Answer on Question # 73379, Physics - Electric Circuits :

Question: The following readings were obtain in an experiment

P(volt) 1.5 \ 2.5 \ 3.3 \ 3.9 \ 4.3 \ 4.6

R(amp) 0.30 \0.52 \0.66 \ 0.80 \ 0.86 \ 0.92

was asked to plot a graph of P against R

a, Calculate the slope and determine the error in the slope.

b, If P and R are related by the equation $p=a^2R$, determine the value of a and the standard error.

Solution:

a. To calculate slope we have to find first AB and OA length. From the graph we find OA = 3 unit = 0.1 x 3 = 0.3 amps. And AB = 3 unit = 0.5 x 3 = 1.5 volts. Slope = $\frac{AB}{OA} = \frac{1.5}{0.3} = 5$ volts/amps. Slope error = $\frac{N X Standard square error}{N\Sigma R^2 - \Sigma R^2}$, N = 6, number of observation. So, slope error = $\frac{6 \times 0.005}{18.132 - 3.022}$ = 0.04 [Put the value standard square error from equation 1] ΣR^2 = 3.022 and $N\Sigma R^2$ = 18.132

b. If P and R are related by the equation $p=a^2R$, then $a^2 = 5$ (actually this is the slope of the graph). Then a = v(5) = 2.236068 unit.

Now, here number of observation (N) = 6 And $\sum (5R - P)^2 = 0.02$ Now standard square error $= \frac{0.02}{6-2} = \frac{0.02}{4} = 0.005$ (1) So, standard error $= \sqrt{(0.005)} = 0.0707$ (approx).

Answer provided by https://www.AssignmentExpert.com