Answer on Question \# 73379, Physics - Electric Circuits :

Question: The following readings were obtain in an experiment
P (volt) $1.5 \backslash 2.5 \backslash 3.3 \backslash 3.9 \backslash 4.3 \backslash 4.6$
$R(\mathrm{amp}) 0.30 \backslash 0.52 \backslash 0.66 \backslash 0.80 \backslash 0.86 \backslash 0.92$
was asked to plot a graph of P against R
a, Calculate the slope and determine the error in the slope.
b, If P and R are related by the equation $p=a^{2} R$, determine the value of a and the standard error.

Solution:

a. To calculate slope we have to find first $A B$ and $O A$ length.

From the graph we find $O A=3$ unit $=0.1 \times 3=0.3 \mathrm{amps}$.
And $A B=3$ unit $=0.5 \times 3=1.5$ volts.
Slope $=\frac{A B}{O A}=\frac{1.5}{0.3}=5$ volts $/ \mathrm{amps}$.
Slope error $=\frac{N X \text { Standard square error }}{N \sum R^{2}-\sum R^{2}} \quad, \mathrm{~N}=6$, number of observation.

So, slope error $=\frac{6 \times 0.005}{18.132-3.022}=0.04$ [Put the value standard square error from equation 1]
$\sum R^{2}=3.022$ and $N \sum R^{2}=18.132$
b. If P and R are related by the equation $p=a^{2} R$, then $a^{2}=5$ (actually this is the slope of the graph). Then $a=V(5)=2.236068$ unit.

Now, here number of observation $(N)=6$
And $\sum(5 R-P)^{2}=0.02$
Now standard square error $=\frac{0.02}{6-2}=\frac{0.02}{4}=0.005$
So, standard error $=V(0.005)=0.0707$ (approx).
Answer provided by https://www.AssignmentExpert.com

