

Answer on Question #73340 - Physics / Electric Circuits

A wire of resistance $R = 3.0 \Omega$ is connected to a battery whose emf is $\mathcal{E} = 5.0 \text{ V}$ and whose internal resistance is $= 1.0 \Omega$.

(a) How much energy is transferred from chemical to electrical form in $t = 4.0 \text{ min}$?
(b) How much energy appears in the wire as thermal energy in that time?

Solution:

(a) Total energy that is transferred from chemical to electrical form in $t = 4 \text{ min}$

$$U_{total} = \mathcal{E}It$$

where $I = \frac{\mathcal{E}}{R+r}$ is the current through the circuit.

So

$$U_{total} = \frac{\mathcal{E}^2}{R+r} t = \frac{5.0^2}{3.0 + 1.0} \times 4 \times 60 = 1500 \text{ J}.$$

(b)

$$U_{wire} = I^2Rt = \frac{\mathcal{E}^2}{(R+r)^2} Rt = \frac{5.0^2}{(3.0 + 1.0)^2} \times 3.0 \times 4 \times 60 = 1125 \text{ J}.$$

Answers:

(a) 1500 J
(b) 1125 J

Answer provided by <https://www.AssignmentExpert.com>