Answer on Question #73338, Physics / Molecular Physics | Thermodynamics

A mixture of saturated water and saturated steam at a temperature of 300 °C is contained in a closed vessel of 0.1 m³ capacity. If the mass of saturated water is 1 kg find the mass of steam in the vessel. Also, find the pressure, specific volume, dryness fraction and enthalpy of the mixture.

Solution:

From the Steam tables corresponding to 300°C, $v_f = v_1 = 0.001403 \text{ m}^3 \text{/kg}$ $v_g = v_s = 0.022 \text{ m}^3 \text{/kg}$ p = 85.81 bar

Total volume occupied by the liquid, $V_1 = m_1 \times v_1 = 1 \times 0.001403 = 0.001403 \text{ m}^3.$

Total volume of the vessel, V = Volume of liquid + Volume of steam = V₁ + V_s 0.1 = 0.001403 + V_s V_s = 0.1 - 0.001403 = 0.098597 m³

Mass of steam, m_s = V_s / v_s =0.098597 / 0.022 = 4.48 kg.

Mass of mixture of liquid and steam, $m = m_1 + m_s = 1 + 4.48 = 5.48 \text{ kg}.$

Total specific volume of the mixture, v= =0.1 / 5.48 = 0.01825 m³ / kg.

Dryness fraction can be expressed: $\zeta = m_s / (m_w + m_s)$ $\zeta = 4.48/5.48 = 0.8$

v = v_f + x v_{fg} 0.01825 = 0.001403 + x (0.022 -0.001403) x = 0.81

From Steam table corresponding to 300 °C, h_f = 1344 KJ / kg h_{fg} = 1405 KJ / kg

Enthalpy of mixture, h= h_f + x h_{fg} = 1344 + 0.81 × 1405 = 2482.05 KJ / kg Answer: 85.81 bar; 4.48 kg; 0.01825 m³ / kg; 0.8; 2482.05 KJ / kg