Answer on Question \#73329-Physics-Molecular Physics-Thermodynamics

A mixture of saturated water and saturated steam at a temperature of $300^{\circ} \mathrm{C}$ is contained in a closed vessel of 0.1 m 3 capacity. If the mass of saturated water is 1 kg find the mass of steam in the vessel. Also find the pressure, specific volume, dryness fraction and enthalpy of the mixture.

Solution

At $300^{\circ} \mathrm{C}$:

$$
\begin{gathered}
v_{w}=1.40369 \cdot 10^{-3} \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} . \\
V_{W}=v_{w} m_{w}=1.40369 \cdot 10^{-3}(1)=1.40369 \cdot 10^{-3} \mathrm{~m}^{3} . \\
V_{g}=0.1-1.40369 \cdot 10^{-3}=0.098596 \mathrm{~m}^{3} .
\end{gathered}
$$

The mass of steam in the vessel is

$$
\begin{gathered}
m_{g}=V_{g} \rho_{g}=(0.098596)(46.1538)=4.55 \mathrm{~kg} . \\
v_{g}=0.0216667 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \\
v=(1-x) v_{w}+x v_{g} \\
v=v_{w}-x v_{w}+x v_{g} \\
v=\frac{V}{m}=\frac{0.1}{1+4.55}=0.01802
\end{gathered}
$$

Mixture
Dryness fraction:

$$
x=\frac{v-v_{w}}{v_{g}-v_{w}}=\frac{0.01802-1.40369 \cdot 10^{-3}}{0.0216667-1.40369 \cdot 10^{-3}}=0.82 \text { or } 82 \%
$$

Pressure is

$$
p=84.8 \mathrm{bar} .
$$

Specific volume is

$$
v=0.01802 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}
$$

Enthalpy is

$$
H=h m=\left(2.496 \cdot 10^{6}\right)(1+4.55)=13.85 \mathrm{MJ} .
$$

Answer provided by https://www.AssignmentExpert.com

