Answer on Question 73308, Physics, Mechanics, Relativity

Question:

A child of mass 50 kg is standing on the edge of a merry-go-round of mass 250 kg and radius 3.0 m which is rotating with an angular velocity of $3.0 \mathrm{rad} / \mathrm{s}^{-1}$. The child then starts walking towards the centre of the merry-go-round. What will be the final angular velocity of the merry-go-round when the child reaches the centre?

Solution:

We can find the final angular velocity of the merry-go-round from the law of conservation of angular momentum:

$$
\begin{aligned}
L_{i} & =L_{f} \\
I_{i} \omega_{i} & =I_{f} \omega_{f}
\end{aligned}
$$

here, I_{i} is the initial rotational inertia of the system, I_{f} is the final rotational inertia of the system, ω_{i} is the initial angular velocity of the merry-go-round, ω_{f} is the final angular velocity of the merry-go-round.

We can find the initial rotational inertia of the system as follows:

$$
I_{i}=\left(I_{d i s k, i}+I_{c h i l d, i}\right)=\left(\frac{1}{2} m_{d i s k} r_{d i s k, i}^{2}+m_{\text {child }} r_{c h i l d, i}^{2}\right)
$$

here, $I_{d i s k, i}=\frac{1}{2} m_{d i s k} r_{d i s k, i}^{2}$ is the initial rotational inertia of the merry-go-round, $I_{\text {child }, i}=m_{\text {child }} r_{\text {child, }, i}^{2}$ is the initial rotational inertia of the child, $m_{\text {disk }}$ is the mass of the marry-go-round, $m_{\text {child }}$ is the mass of the child, $r_{d i s k}$ is the radius of the merry-go-round, $r_{\text {child }}$ is the distance from the centre of the merry-go-round to the child.

Then, we can calculate I_{i} :

$$
\begin{aligned}
& I_{i}=\left(\frac{1}{2} m_{\text {disk }} r_{\text {disk }, i}^{2}+m_{\text {child }} r_{\text {child }, i}^{2}\right)= \\
& \quad=\left(\frac{1}{2} \cdot 250 \mathrm{~kg} \cdot(3.0 \mathrm{~m})^{2}+50 \mathrm{~kg} \cdot(3.0 \mathrm{~m})^{2}\right)=1575 \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

Similarly, we can find the final rotational inertia of the system:

$$
I_{f}=\left(I_{d i s k, f}+I_{c h i l d, f}\right)=\left(\frac{1}{2} m_{d i s k} r_{d i s k, f}^{2}+m_{\text {child }} r_{c h i l d, f}^{2}\right)
$$

here, $I_{d i s k, f}=\frac{1}{2} m_{d i s k} r_{d i s k, f}^{2}$ is the final rotational inertia of the merry-go-round, $I_{\text {child,f }}=m_{\text {child }} r_{\text {child,f }}^{2}$ is the final rotational inertia of the child, $m_{\text {disk }}$ is the mass of the marry-go-round, $m_{\text {child }}$ is the mass of the child, $r_{\text {disk }}$ is the radius of the merry-go-round, $r_{\text {child }}$ is the distance from the centre of the merry-go-round to the child.

Then, we can calculate I_{f} :

$$
\begin{aligned}
& I_{f}=\left(\frac{1}{2} m_{\text {disk }} r_{\text {disk,f }}^{2}+m_{\text {child }} r_{\text {child,f }}^{2}\right)= \\
& \quad=\left(\frac{1}{2} \cdot 250 \mathrm{~kg} \cdot(3.0 \mathrm{~m})^{2}+50 \mathrm{~kg} \cdot(0.0 \mathrm{~m})^{2}\right)=1125 \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

Finally, we can calculate the final angular velocity of the merry-go-round from the law of conservation of angular momentum:

$$
\begin{gathered}
I_{i} \omega_{i}=I_{f} \omega_{f} \\
\omega_{f}=\omega_{i} \frac{I_{i}}{I_{f}}=3.0 \frac{\mathrm{rad}}{\mathrm{~s}} \cdot \frac{1575 \mathrm{~kg} \cdot \mathrm{~m}^{2}}{1125 \mathrm{~kg} \cdot \mathrm{~m}^{2}}=4.2 \frac{\mathrm{rad}}{\mathrm{~s}}
\end{gathered}
$$

Answer:
$\omega_{f}=4.2 \frac{\mathrm{rad}}{\mathrm{s}}$.
Answer provided by https://www.AssignmentExpert.com

