Answer on Question 73280, Physics / Mechanics | Relativity
 Question

A wheel 2.0 m in diameter lies in the vertical plane and rotates about its central axis with a constant angular acceleration of $4.0 \mathrm{rad} \mathrm{s}-2$. The wheel starts at rest at $\mathrm{t}=0$ and the radius vector of a point A on the wheel makes an angle of 60 with the horizontal at this instant. Calculate the angular speed of the wheel, the angular position of the point A and the total acceleration at $\mathrm{t}=2.0 \mathrm{~s}$.
Solution. The equation that gives the angular speed $\omega(t)$ of the wheel is
$\omega(t)=\omega_{0}+\alpha t$
where ω_{0} is the initial angular speed, $\omega_{0}=0, \alpha$ is the angular acceleration, $\alpha=4.0 \mathrm{rad} / \mathrm{s}^{2}$. Substituting knowing numbers, we find the angular speed of the wheel at $\mathrm{t}=2.0 \mathrm{~s}$.
$\omega(t=2 \mathrm{~s})=0+4.0 \frac{\mathrm{rad}}{\mathrm{s}^{2}} \cdot 2.0 \mathrm{~s}=8.0 \frac{\mathrm{rad}}{\mathrm{s}}$
The equation that gives the angular position of the point A is
$\theta(t)=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2}$
where $\theta_{0}=60^{\circ}$ is the initial angular position of the radius vector of a point A. Substituting knowing numbers, we find the angular position of the point A at $\mathrm{t}=2.0 \mathrm{~s}$
$\theta(t=2)=60^{\circ}+0+\frac{1}{2} \cdot 4.0 \frac{\mathrm{rad}}{\mathrm{s}^{2}} \cdot(2.0 \mathrm{~s})^{2}=60^{\circ}+8.0 \mathrm{rad}$
Define how many degrees are equal to 8 radians. It is known that $1 \mathrm{rad}=57.2958^{\circ}$, then
$8 \mathrm{rad}=8 \cdot 57.2958^{\circ} \approx 458.0^{\circ}$
and
$\theta(t=2 s) \approx 60^{\circ}+458.0^{\circ}=518.0^{\circ}$
In order to find the total acceleration, we first find the tangential a_{τ} and normal a_{n} acceleration at $\mathrm{t}=2.0 \mathrm{~s}$
$a_{\tau}(t=2 \mathrm{~s})=\alpha r=4.0 \frac{\mathrm{rad}}{\mathrm{s}^{2}} \cdot 1.0 \mathrm{~m}=4.0 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$a_{n}(t=2 \mathrm{~s})=r \omega^{2}=1.0 \mathrm{~m} \cdot\left(8.0 \frac{\mathrm{rad}}{\mathrm{s}}\right)^{2}=64.0 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
The equation that gives the total acceleration is
$a_{t o t}=\sqrt{a_{\tau}^{2}+a_{n}^{2}}$
Substituting knowing numbers, we find
$a_{t o t}(t=2 s)=\sqrt{(4.0)^{2}+(64.0)^{2}}=\sqrt{16+4096} \approx 64.125 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

Answer:

$\omega(t=2 \mathrm{~s})=8.0 \frac{\mathrm{rad}}{\mathrm{s}}$
$\theta(t=2 s) \approx 518.0^{\circ}$
$a_{t o t}(t=2 s) \approx 64.125 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
Answer provided by https://www.AssignmentExpert.com

