1) A thin sheet of gold foil has an area of $A=3.12 \mathrm{~cm}^{2}$ and weighs $m=6.5 \mathrm{mg}$. How thick is the sheet? ($\rho=19300 \mathrm{~kg} / \mathrm{m}^{3}$)

Solution:

The weight of gold foil $m=\rho V=\rho A h$. Thus, the thick of foil is

$$
h=\frac{m}{\rho A}=\frac{6.5 \times 10^{-3}}{19300 \times 3.12 \times 10^{-4}}=0.001 \mathrm{~m}=1 \mathrm{~mm}
$$

Answer: 1 mm
2) An irregular piece of metal weighs $m=10 \mathrm{~g}$ in air \& $m^{\prime}=8.0 \mathrm{~g}$ when submerged in $\mathrm{H}_{2} \mathrm{O}$.
a.) Determine the volume of the metal \& its density
b.) If the same piece of metal weighs $m^{\prime \prime}=8.5 \mathrm{~g}$ when immersed in a particular oil, what is the density of the oil?

Solution:

The weight of piece of metal in $\mathrm{H}_{2} \mathrm{O}$

$$
m^{\prime} g=m g-\rho_{W} g V
$$

Thus, the volume of a piece of metal

$$
V=\frac{m-m^{\prime}}{\rho_{W}}=\frac{10-8.0}{1.0}=2.0 \mathrm{~cm}^{3}
$$

The density of a piece of metal

$$
\rho_{\text {metal }}=\frac{m}{V}=\frac{10}{2}=5.0 \mathrm{~g} / \mathrm{cm}^{3}
$$

The weight of piece of metal in oil

$$
m^{\prime \prime} g=m g-\rho_{\text {oil }} g V
$$

So

$$
\rho_{\text {oil }}=\frac{m-m^{\prime \prime}}{V}=\frac{10-8.5}{2.0}=0.75 \mathrm{~g} / \mathrm{cm}^{3}
$$

Answers:

$$
V=2.0 \mathrm{~cm}^{3}
$$

$$
\rho_{\text {metal }}=5.0 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}
$$

$$
\rho_{\text {oil }}=0.75 \mathrm{~g} / \mathrm{cm}^{3}
$$

Answer provided by https://www.AssignmentExpert.com

