Answer on Question \#73196, Physics / Mechanics | Relativity

Question. A crate of mass 30.0 kg pulled by a force of 180 N up an inclined plane which makes is an angle of 30 with the horizon. The coefficient of kinetic friction between the plane and the crate is $\mu_{k}=0.225$. If the crates starts from rest, calculate its speed after it has been pulled 15.0 m . Draw the free body diagram.
Given. $m=30.0 \mathrm{~kg} ; F=180 \mathrm{~N} ; \mu_{k}=0.225 ; S=15.0 \mathrm{~m} ; v_{0}=0$.
Find. $v-$?

Solution.

According to the second Newton's Low, we have

$$
\begin{array}{r}
N-m g \cos \alpha=0 \rightarrow N=m g \cos \alpha \\
F-F_{f}-m g \sin \alpha=m a \rightarrow F-\mu_{k} N-m g \sin \alpha=m a \rightarrow \\
\rightarrow F-\mu_{k} m g \cos \alpha-m g \sin \alpha=m a \rightarrow \quad a=\frac{F-\mu_{k} m g \cos \alpha-m g \sin \alpha}{m}= \\
=\frac{F}{m}-\left(\mu_{k} \cos \alpha+\sin \alpha\right) g=\frac{180}{30}-\left(\sin 30^{\circ}-0.225 \cdot \cos 30^{\circ}\right) \cdot 9.8 \approx 3.01 \mathrm{~m} / \mathrm{s}^{2}
\end{array}
$$

So

$$
S=\frac{v^{2}-v_{0}^{2}}{2 a} \rightarrow S=\frac{v^{2}}{2 a} \rightarrow v=\sqrt{2 a S}=\sqrt{2 \cdot 3.01 \cdot 15} \approx 9.5 \mathrm{~m} / \mathrm{s}
$$

Answer. $v=9.5 \mathrm{~m} / \mathrm{s}$.
Answer provided by https://www.AssignmentExpert.com

