

Answer on Question #73196, Physics / Mechanics | Relativity

Question. A crate of mass 30.0 kg pulled by a force of 180 N up an inclined plane which makes an angle of 30° with the horizon. The coefficient of kinetic friction between the plane and the crate is $\mu_k = 0.225$. If the crate starts from rest, calculate its speed after it has been pulled 15.0 m . Draw the free body diagram.

Given. $m = 30.0 \text{ kg}$; $F = 180 \text{ N}$; $\mu_k = 0.225$; $S = 15.0 \text{ m}$; $v_0 = 0$.

Find. $v - ?$

Solution.

According to the second Newton's Law, we have

$$N - mg \cos \alpha = 0 \rightarrow N = mg \cos \alpha$$

$$F - F_f - mg \sin \alpha = ma \rightarrow F - \mu_k N - mg \sin \alpha = ma \rightarrow$$

$$\rightarrow F - \mu_k mg \cos \alpha - mg \sin \alpha = ma \rightarrow a = \frac{F - \mu_k mg \cos \alpha - mg \sin \alpha}{m} =$$

$$= \frac{F}{m} - (\mu_k \cos \alpha + \sin \alpha)g = \frac{180}{30} - (\sin 30^\circ - 0.225 \cdot \cos 30^\circ) \cdot 9.8 \approx 3.01 \text{ m/s}^2$$

So

$$S = \frac{v^2 - v_0^2}{2a} \rightarrow S = \frac{v^2}{2a} \rightarrow v = \sqrt{2aS} = \sqrt{2 \cdot 3.01 \cdot 15} \approx 9.5 \text{ m/s}$$

Answer. $v = 9.5 \text{ m/s}$.

Answer provided by <https://www.AssignmentExpert.com>