Answer on Question #73184, Physics / Electric Circuits

Question. Calculate the time in minutes required to electroplate an article of $S = 300 \ cm^2$ with a layer of copper $h = 0.06 \ mm$ in thick if a constant current of $I = 24 \ A$ is maintained. Assume that the density of a copper is $\rho = 8.8 \ g/cm^3$ and that 1 coulomb liberates $\Delta m = 0.0033 \ g$ of copper.

Given. $S = 300 \ cm^2$; $h = 0.06 \ mm$; $I = 24 \ A$; $\rho = 8.8 \ g/cm^3$; $\Delta m = 0.0033 \ g/C$.

Find. t-?

Solution.

So, the volume of copper

$$V = S \cdot h$$
.

$$\rho = \frac{m}{V} \rightarrow m = \rho \cdot V = \rho \cdot S \cdot h.$$

For a constant current

$$I = \frac{q}{t} \quad \to \quad q = I \cdot t.$$

Hence

$$\frac{m}{\Delta m} = q \rightarrow \frac{m}{\Delta m} = I \cdot t \rightarrow \frac{\rho \cdot S \cdot h}{\Delta m} = I \cdot t \rightarrow$$

$$\rightarrow t = \frac{\rho \cdot S \cdot h}{\Delta m \cdot I} = \frac{8800 \cdot 300 \cdot 10^{-4} \cdot 0.06 \cdot 10^{-3}}{0.0033 \cdot 10^{-3} \cdot 24} = 200 \, s$$

Answer. t = 200 s.

Answer provided by https://www.AssignmentExpert.com