Answer on Question 73158, Physics, Mechanics, Relativity

Question:

A horizontal rod with a mass of 10 kg and length 12 m is hinged to a wall at one end and supported by a cable which makes an angle of 30° with the rod at its other end. Calculate the tension in the cable and the force exerted by the hinge.

Solution:

a) The sum of torques about the hinge must be equal to zero:

$$
\begin{gathered}
\sum \tau=0 \\
-W \frac{L}{2}+T L \sin \alpha=0 \\
-m g \frac{L}{2}+T L \sin \alpha=0 \\
m g \frac{L}{2}=T L \sin \alpha
\end{gathered}
$$

here, $W=m g$ is the weight of the rod, $m=10 \mathrm{~kg}$ is the mass of the rod, $g=$ $9.8 \mathrm{~m} / \mathrm{s}^{2}$ is the acceleration due to gravity, $L=12 \mathrm{~m}$ is the length of the rod, T is the tension in the cable and $\alpha=30^{\circ}$ is the angle which the cable makes with the rod.

Then, from this formula we can find the tension in the cable:

$$
T=\frac{m g}{2 \sin \alpha}=\frac{10 \mathrm{~kg} \cdot 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}{2 \cdot \sin 30^{\circ}}=98 \mathrm{~N} .
$$

b) The sum of the forces must be equal to zero:

$$
\Sigma F=0 .
$$

Let's write the sum of the components of the forces in projections on axis x and y :

$$
\begin{gathered}
F_{x}-T_{x}=0, \\
F_{x}=T_{x}=T \cos \alpha=98 \mathrm{~N} \cdot \cos 30^{\circ}=85 \mathrm{~N}, \\
F_{y}+T_{y}-W=0, \\
F_{y}=m g-T \sin \alpha=10 \mathrm{~kg} \cdot 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}-98 \mathrm{~N} \cdot \sin 30^{\circ}=49 \mathrm{~N} .
\end{gathered}
$$

Finally, we can find the force exerted on the hinge from the Pythagorean theorem:

$$
F=\sqrt{F_{x}^{2}+F_{y}^{2}}=\sqrt{(85 N)^{2}+(49 N)^{2}}=98 N .
$$

Answer:

a) $T=98 \mathrm{~N}$.
b) $F=98 \mathrm{~N}$.

