## Answer on Question \#73153-Physics-Other

Prove that the volume of a unit cell of the reciprocal lattice of a bcc structure is inversely proportional to the volume of the unit cell of its direct lattice.

## Solution

For a bcc structure:

$$
\begin{gathered}
\boldsymbol{a}_{1}=\frac{a}{2}(-1,1,1) \\
\boldsymbol{a}_{2}=\frac{a}{2}(1,-1,1) \\
\boldsymbol{a}_{3}=\frac{a}{2}(1,1,-1) \\
V_{b}=\boldsymbol{a}_{1} \times \boldsymbol{a}_{2} \cdot \boldsymbol{a}_{3} \\
\boldsymbol{a}_{\mathbf{1}} \times \boldsymbol{a}_{\mathbf{2}}=\frac{a}{2}(-1,1,1) \times \frac{a}{2}(1,-1,1)=\frac{a^{2}}{4}(2,2,0) \\
V_{b}=\frac{a^{2}}{4}(2,2,0) \cdot \frac{a}{2}(1,1,-1)=\frac{a^{3}}{8}(2+2)=\frac{a^{3}}{2} .
\end{gathered}
$$

For the reciprocal lattice:

$$
\begin{gathered}
\boldsymbol{a}_{\mathbf{1}}^{*}=\frac{c}{a}(0,1,1) \\
\boldsymbol{a}_{\mathbf{2}}^{*}=\frac{c}{a}(1,0,1) \\
\boldsymbol{a}_{\mathbf{3}}^{*}=\frac{c}{a}(1,1,0) \\
V^{*}=\boldsymbol{a}_{1}^{*} \times \boldsymbol{a}_{\mathbf{2}}^{*} \cdot \boldsymbol{a}_{\mathbf{3}}^{*} \\
\boldsymbol{a}_{\mathbf{1}}^{*} \times \boldsymbol{a}_{\mathbf{2}}^{*}=\frac{c}{a}(0,1,1) \times \frac{c}{a}(1,0,1)=\frac{c^{2}}{a^{2}}(1,1,-1) \\
V^{*}=\frac{c^{2}}{a^{2}}(1,1,-1) \cdot \frac{c}{a}(1,1,0)=\frac{1}{2} \frac{c^{3}}{a^{3}}=\frac{1}{4} \frac{c^{3}}{V_{B}}
\end{gathered}
$$

Thus,

$$
V^{*} \sim \frac{1}{V_{B}}
$$

Answer provided by https://www.AssignmentExpert.com

