Answer on Question \#73127- Physics / Mechanics | Relativity

A student is pushing a $m=35 \mathrm{~kg}$ desk across a floor at a constant speed of $v_{1}=4 \mathrm{~m} / \mathrm{s}$. How much work, to the nearest whole joule, must the student do on the desk to change the speed to $v_{2}=6 \mathrm{~m} / \mathrm{s}$?

Solution:

$$
\begin{gathered}
\text { Work done }=\text { change of energy } \\
W=\frac{m v_{2}^{2}}{2}-\frac{m v_{1}^{2}}{2} \\
W=\frac{35 \times 36}{2}-\frac{35 \times 16}{2}=630-280=350 \mathrm{~J}
\end{gathered}
$$

Answer $W=350$ J
Answer provided by https://www.AssignmentExpert.com

