A dentist uses a small mirror of radius 40 mm to locate a cavity in a patient's tooth. If the mirror is concave and is held $\mathbf{1 1} \mathbf{~ m m}$ from the tooth, what is the magnification of the image?

Equation for concave mirror:

$$
\frac{1}{d_{0}}+\frac{1}{d_{i}}=\frac{2}{R}
$$

where d_{0}-object distance, d_{i} - image distance, R - radius of curvature.
In this case, magnification:

$$
m=-\frac{d_{i}}{d_{0}}
$$

From the first equation:

$$
d_{i}=\frac{R d_{0}}{2 d_{0}-R}
$$

Thus, magnification:

$$
\begin{gathered}
m=-\frac{\frac{R d_{0}}{2 d_{0}-R}}{d_{0}}=-\frac{R}{2 d_{0}-R} \\
m=-\frac{40 \mathrm{~mm}}{2 * 11 \mathrm{~mm}-40 \mathrm{~mm}}=2.22
\end{gathered}
$$

Answer: $m=2.22$

