Answer on Question \#73083- Physics / Mechanics | Relativity

A block of mass $m=1 \mathrm{~kg}$ is attached to a spring of force constant $k=25 / 4 \mathrm{~N} / \mathrm{m}$. It is pulled $x_{0}=0.3 \mathrm{~m}$ from its equilibrium position and released from rest. This spring-block apparatus is submerged in a viscous fluid medium which exerts a damping force of $F_{\text {frict }}=-4 v$ (where v is the instantaneous velocity of the block). Determine of the position $\mathrm{x}(\mathrm{t})$ of the block at time t.

Solution:

The Newton's second law

$$
\begin{gathered}
m a=-k x+F_{\text {frict }} \\
m \ddot{x}(t)+4 \dot{x}(v)+k x=0 \\
\ddot{x}+4 \dot{x}+\frac{25}{4} x=0
\end{gathered}
$$

Solution

$$
\begin{gathered}
x \sim e^{\lambda t} \\
\lambda^{2}+4 \lambda+\frac{25}{4}=0 \\
D=16-25=-9 \\
\lambda=\frac{-4 \pm 3 i}{2}=-2 \pm 1.5 i \\
x(t)=e^{-2 t} A \cos (1.5 t) \\
x(0)=A=0.3
\end{gathered}
$$

Finally

$$
x(t)=0.3 e^{-2 t} \cos (1.5 t)
$$

Answer $x(t)=0.3 e^{-2 t} \cos (1.5 t)$
Answer provided by https://www.AssignmentExpert.com

