Answer on Question \#73055, Physics / Electric Circuits

A straight conductor carrying current of $I=2.45$ ampere floats horizontal in air in uniform magnetic field of induction $B=4 \times 10^{-4} \mathrm{~Wb}$ /metre square field is horizontal at right angle to length of conductor. If conductor has linear density of $\tau=0.1 \mathrm{~g} / \mathrm{m}$. Find the acceleration due to gravity at that place.

Solution:

The Newton's second law gives

$$
m a=m g-F_{\mathrm{A}}
$$

where $F_{\mathrm{A}}=B I l$ is the Ampere's force.
Thus

$$
\begin{gathered}
a=g-\frac{F_{\mathrm{A}}}{m}=g-\frac{B I l}{m}=g-\frac{B I}{\tau} \\
a=9.8-\frac{4 \times 10^{-4} \times 2.45}{0.0001}=0 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

Answer: $0 \mathrm{~m} / \mathrm{s}^{2}$
Answer provided by https://www.AssignmentExpert.com

