Answer on Question \#73034-Physics-Classical Mechanics

A crate of mass 30.0 kg is pulled by a force of 180 N up an inclined plane which makes an angle of 300 with the horizon. The coefficient of kinetic friction between the plane and the crate is $\mathrm{mk}=0.225$. If the crates starts from rest, calculate its speed after it has been pulled 15.0 m . Draw the free body diagram.

Solution

The free body diagram:

The sum of forces parallel to the incline:

$$
m a=F-W \sin 30-F_{f r}
$$

The sum of forces perpendicular to the incline:

$$
\begin{gathered}
0=N-W \cos 30 \\
F_{f r}=\mu_{k} N=\mu_{k} W \cos 30
\end{gathered}
$$

Thus,

$$
\begin{gathered}
m a=F-W \sin 30-\mu_{k} W \cos 30 \\
m a=F-m g \sin 30-\mu_{k} m g \cos 30 \\
a=\frac{F}{m}-g \sin 30-\mu_{k} g \cos 30=\left(\frac{180}{30}-9.8 \sin 30-(0.225) 9.8 \cos 30\right)=-0.809
\end{gathered}
$$

We use kinematic equation:

$$
\begin{gathered}
v^{2}-0^{2}=2 a d \\
v=\sqrt{2 a d} \\
v=\sqrt{2 d\left(\frac{F}{m}-g \sin 30-\mu_{k} g \cos 30\right)}
\end{gathered}
$$

$$
v=\sqrt{2(15)\left(\frac{180}{30}-9.8 \sin 30-(0.225) 9.8 \cos 30\right)}=4.93 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Answer: $4.93 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Answer provided by https://www.AssignmentExpert.com

