Answer on Question \#73033-Physics-Classical Mechanics

A wheel 2.0 m in diameter lies in the vertical plane and rotates about its central axis with a constant angular acceleration of $4.0 \mathrm{rad} \mathrm{s}-2$. The wheel starts at rest at $\mathrm{t}=0$ and the radius vector of a point A on the wheel makes an angle of $60{ }^{\circ}$ with the horizontal at this instant. Calculate the angular speed of the wheel, the angular position of the point A and the total acceleration at $\mathrm{t}=2.0 \mathrm{~s}$.

Solution

The angular speed of the wheel is

$$
\omega=\alpha t=4(2)=8.0 \frac{\mathrm{rad}}{\mathrm{~s}} .
$$

The angular position of the point A is

$$
\begin{gathered}
\phi=\phi_{0}+\omega_{0} t+\frac{\alpha t^{2}}{2} . \\
\omega_{0}=0 . \\
\phi_{0}=\frac{\pi}{3} . \\
\phi=\frac{\pi}{3}+\frac{4(2)^{2}}{2}=9.0 \mathrm{rad}=518^{\circ} .
\end{gathered}
$$

The angular position of the point A is

$$
518^{\circ}-360^{\circ}=158^{\circ} \text { from the horizontal } .
$$

The total acceleration is

$$
\begin{gathered}
a=\sqrt{\left(r \omega^{2}\right)^{2}+(r \alpha)^{2}}=r \sqrt{(\omega)^{4}+(\alpha)^{2}} \\
a=2 \sqrt{(8)^{4}+(4)^{2}}=130 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} .
\end{gathered}
$$

Answer provided by https://www.AssignmentExpert.com

