Question. Determine the magnitude and direction of the electric field at a point midway between a -8 microC and a 5.8 microC charge 6 cm apart.

Given. $q_{1}=-8$ microc $; q_{2}=5.8 \mathrm{microC} ; d=6 \mathrm{~cm}$.
Find. $|\vec{E}|-$?

Solution.

For a point charge

$$
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{x^{2}} .
$$

For our two charges

So

$$
\begin{aligned}
&\left|\vec{E}_{1}\right|= \frac{1}{4 \pi \varepsilon_{0}} \frac{\left|q_{1}\right|}{(d / 2)^{2}}=\frac{1}{4 \cdot 3.14 \cdot 8.85 \cdot 10^{-12}} \frac{8 \cdot 10^{-6}}{(0.06 / 2)^{2}}=80 \cdot 10^{6} \mathrm{~V} / \mathrm{m} \\
&\left|\vec{E}_{2}\right|= \frac{1}{4 \pi \varepsilon_{0}} \frac{\left|q_{2}\right|}{(d / 2)^{2}}=\frac{1}{4 \cdot 3.14 \cdot 8.85 \cdot 10^{-12}} \frac{5.8 \cdot 10^{-6}}{(0.06 / 2)^{2}}=58 \cdot 10^{6} \mathrm{~V} / \mathrm{m} \\
&|\vec{E}|=\left|\vec{E}_{1}\right|+\left|\vec{E}_{2}\right|=80 \cdot 10^{6}+58 \cdot 10^{6}=138 \cdot 10^{6} \mathrm{~V} / \mathrm{m} .
\end{aligned}
$$

Answer. $|\vec{E}|=138 \cdot 10^{6} \mathrm{~V} / \mathrm{m}$; the vector of the electric field is directed to the negative charge. Answer provided by https://www.AssignmentExpert.com

