Answer on Question \#72986, Physics / Mechanics | Relativity

An ambulance siren has frequency 250 Hz . The ambulance is headed towards an accident site with a speed of $90 \mathrm{~km} / \mathrm{h}$. Two police officers on separate motor cycles head for the same accident site: one follows the ambulance with a speed of $80 \mathrm{~km} / \mathrm{h}$. and the other approaches the accident site from the other direction with a speed of $80 \mathrm{~km} / \mathrm{h}$. What frequency does ambulance siren has for each of the police officers? Take the speed of sound equal to $340 \mathrm{~m} / \mathrm{s}$.

Solution:

We use the equation for the Doppler Effect:

$$
f=\left(\frac{c+v_{r}}{c+v_{s}}\right) f_{0}
$$

where c is the velocity of waves in the medium; v_{r} is the velocity of the receiver relative to the medium; positive if the receiver is moving towards the source (and negative in the other direction); v_{s} is the velocity of the source relative to the medium; positive if the source is moving away from the receiver (and negative in the other direction).

If the speeds v_{s} and v_{r} are small compared to the speed of the wave, the relationship between observed frequency f and emitted frequency f_{0} is approximately

$$
f=\left(1+\frac{\Delta v}{c}\right) f_{0}
$$

Police officer follows the ambulance

$$
f=\left(1+\frac{22.2 \mathrm{~m} / \mathrm{s}-25 \mathrm{~m} / \mathrm{s}}{340 \mathrm{~m} / \mathrm{s}}\right) \times 250 \mathrm{~Hz}=247.9 \mathrm{~Hz}
$$

Police officer moving towards the ambulance

$$
f=\left(1+\frac{25 \mathrm{~m} / \mathrm{s}-22.2 \mathrm{~m} / \mathrm{s}}{340 \mathrm{~m} / \mathrm{s}}\right) \times 250 \mathrm{~Hz}=252 \mathrm{~Hz}
$$

Answer: 247.9 Hz and 252 Hz

Answer provided by https://www.AssignmentExpert.com

