Answer on Question \#72942-Physics-Mechanics-Relativity

A steel safe with a mass 800 kg is to be loaded onto a truck 1.00 m above the ground by sliding it up a plank 3.00 m long. If it tales 100 newtons to overcome friction, what total force is necessary to push the safe up the plank?

Solution

From the conservation of energy:

$$
f l+m g h=W_{f r} .
$$

$W_{f r}$ is work against friction.
To push the safe up the plank we need:

$$
\begin{gathered}
F l=W_{f r}+m g h . \\
(F-f) l=2 m g h . \\
F=f+\frac{2 m g h}{l} \\
F=100+\frac{2(800)(9.8)(1)}{3}=5330 \mathrm{~N}=5.33 \mathrm{kN} .
\end{gathered}
$$

Answer: 5. 33 kN.
Answer provided by https://www.AssignmentExpert.com

