Question \#72941, Physics / Other

A printing press weighing 9500 newtons was pulled up an incline 1.00 m long and 2.00 m high in 2.00 minutes. The force used to overcome friction was 250 N. Calculare:
(a) Total work input.
(b) Total work output
(c) Potencial energy added
(d) Efficiency
(e) Power generated (bases on work input)

## Solution

(a) $W_{\text {in }}=\Delta E_{g p}+W_{f}=m g \Delta h+f \sqrt{d^{2}+h^{2}}$;
$W_{i n}=9500 \times 2.0+250 \sqrt{1^{2}+2^{2}}=19559 \mathrm{~J}$
(b) $W_{\text {out }}=\Delta E_{g p}=m g \Delta h$;
$W_{\text {out }}=9500 \times 2.0=19000 \mathrm{~J}$
(c) 19000 J
(d) $k=\frac{W_{\text {out }}}{W_{\text {in }}}=\frac{19000}{19559}=0.97$
(e) $P=\frac{W_{\text {in }}}{\Delta t}=\frac{19559}{120}=163 \mathrm{~W}$

Answer provided by https://www.AssignmentExpert.com

