Answer on Question \#72940, Physics / Atomic and Nuclear Physics

Question. What is the kinetic energy of an automobile weighing 1600 kg when it travels (a) $25.0 \mathrm{~km} / \mathrm{h}$ (b) $50.0 \mathrm{~km} / \mathrm{h}$?

Given. $m=1600 \mathrm{~kg} ; v_{1}=25.0 \mathrm{~km} / \mathrm{hr} \approx 6.94 \mathrm{~m} / \mathrm{s} ; v_{2}=50.0 \mathrm{~km} / \mathrm{hr} \approx 13.89 \mathrm{~m} / \mathrm{s}$.
Find. $K E_{1}, K E_{2}$ - ?

Solution.

According to the formula of the kinetic energy

$$
K E=\frac{m v^{2}}{2}
$$

we have

$$
\begin{gathered}
K E_{1}=\frac{m v_{1}^{2}}{2}=\frac{1600 \cdot 6.94^{2}}{2}=38530.88 \mathrm{~J} \\
K E_{2}=\frac{m v_{2}^{2}}{2}=\frac{1600 \cdot 13.89^{2}}{2}=154345.68 \mathrm{~J}
\end{gathered}
$$

Answer. $K E_{1}=38530.88 \mathrm{~J}, K E_{2}=154345.68 \mathrm{~J}$.
Answer provided by https://www.AssignmentExpert.com

