Question. A 1600 kg car driving at $80 \mathrm{~km} / \mathrm{hr}$ puts the brakes on. If $\mu=0.68$, what's the stopping distance? (deceleration due to brakes $=2.9 \mathrm{~m} / \mathrm{s}^{2}$) ?

Given. $m=1600 \mathrm{~kg} ; v_{0}=80 \mathrm{~km} / \mathrm{hr} \approx 22.22 \mathrm{~m} / \mathrm{s} ; \mu=0.68 ; a=-2.9 \mathrm{~m} / \mathrm{s}^{2} ; v_{f}=0 \mathrm{~m} / \mathrm{s}$.
Find. $s-$?

Solution.

If a driver puts on the brakes of a car, the car will not come to a stop immediately. The stopping distance is the distance the car travels before it comes to a rest. It depends on the speed of the car and the coefficient of friction (μ) between the wheels and the road. This stopping distance formula does not include the effect of antilock brakes or brake pumping. The SI unit for stopping distance is meters.

$$
s=\frac{v_{f}^{2}-v_{0}^{2}}{2 a}=\frac{0-v_{0}^{2}}{2(-a)}=\frac{v_{0}^{2}}{2 a} .
$$

According to the Second Newton's Low

$$
F_{f r}=m a \rightarrow \mu m g=m a \rightarrow a=\mu g
$$

Finally

$$
s=\frac{v_{0}^{2}}{2 \mu g}=\frac{22.22^{2}}{2 \cdot 0.68 \cdot 9.8}=37.044 \mathrm{~m} .
$$

Answer. $s=37.044 \mathrm{~m}$.
Answer provided by https://www.AssignmentExpert.com

