Answer on Question \#72868 Physics / Other

A $m=3000 \mathrm{~kg}$ train is travelling $u=30 \mathrm{~m} / \mathrm{s}$ towards east. It collides with a $M=3500 \mathrm{~kg}$ train with a velocity of $v=40 \mathrm{~m} / \mathrm{s}$ towards the west. The two trains combine at impact. Find the velocity V of the combined trains.

Solution:

Let the direction toward the west is positive. The law of conservation of momentum gives

$$
-m u+M v=(m+M) V
$$

Thus

$$
\begin{gathered}
V=\frac{-m u+M v}{m+M} \\
V=\frac{-3000 \times 30+3500 \times 40}{3000+3500}=7.7 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Answer: $7.7 \mathrm{~m} / \mathrm{s}$ toward the west.
Answer provided by https://www.AssignmentExpert.com

