Answer on Question \#72827, Physics / Molecular Physics | Thermodynamics

An electric kettle or negligible heat capacity is rated at 3500 watts if 4 kg of water is put into it now how long does it take the temperature of a water to rise from 30 degree celcius to 120 degree celcius. Specific heat capacity of water $=4200 \mathrm{~kg}-1 \mathrm{k}-1$

Solution

$\mathrm{P}=\frac{Q}{t}$, where $\mathrm{P}-$ power of heater, $\mathrm{Q}-$ heating energy.
$\mathrm{Q}=\mathrm{Cm}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)-$ where $\mathrm{C}-$ water specific heat capacity ($4200 \mathrm{~J} / \mathrm{kg} \times \mathrm{K}$)
$\mathrm{t}=\frac{Q}{P}=\frac{C m(\mathrm{~T} 2-\mathrm{T} 1)}{P} ;$
$\mathrm{t}=\frac{4200 \times 4 \times(120-30)}{3500}=432(\mathrm{~s})$
Perhaps there is a mistake in a problem, because any electric kettle is not able to heat any amount of water to $120^{\circ} \mathrm{C}$ under pressure of 1 atm . It's impossible because water starts to evaporate. Then it turns into steam and steam leaves the kettle, otherwise the kettle will explode. Kettle cannot heat steam from $100^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$. The maximum temperature is the boiling point of water: $100^{\circ} \mathrm{C}$.
$\mathrm{t}=\frac{Q}{P}=\frac{C m(\mathrm{~T} 2-\mathrm{T} 1)}{P} ;$
$\mathrm{t}=\frac{4200 \times 4 \times(100-30)}{3500}=336(\mathrm{~s})$

Answer

432 (s) - time that kettle needs to raise the temperature of 4.0 kg of water from $30^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$. (that is completely impossible).

336 (s) - time that kettle needs to raise the temperature of 4.0 kg of water from $30^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$.
Answer provided by https://www.AssignmentExpert.com

