Answer on Question \#72845-Physics / Mechanics | Relativity

A wheel 2.0 m in diameter lies in the vertical plane and rotates about its central axis with a constant angular acceleration of 4.0 rad s-2
. The wheel starts at rest at $\mathrm{t}=0$ and the radius vector of a point A on the wheel makes an angle of $60{ }^{\circ}$ with the horizontal at this instant. Calculate the angular speed of the wheel, the angular position of the point A and the total acceleration at $\mathrm{t}=2.0 \mathrm{~s}$.

Solution:

The equation of motion and angular speed for the point A on the wheel are given by

$$
\begin{gathered}
\varphi=\varphi_{0}+\omega_{0} t+\frac{\varepsilon t^{2}}{2} \\
\omega=\omega_{0}+\varepsilon t
\end{gathered}
$$

The wheel starts at the rest, so $\omega_{0}=0$.
Thus at $t=2.0 \mathrm{~s}$ the angular position of the point A

$$
\varphi=\frac{\pi}{3}+\frac{4.0 \times 2^{2}}{2}=9.05 \mathrm{rad}=518.6^{\circ}
$$

or 158.6° with the horizontal.
The angular speed

$$
\omega=4.0 \times 2=8.0 \mathrm{rad} / \mathrm{s}
$$

The total acceleration

$$
\begin{gathered}
a=\sqrt{a_{\tau}^{2}+a_{n}^{2}}=\sqrt{(\varepsilon R)^{2}+\left(\omega^{2} R\right)^{2}} \\
a=\sqrt{(4.0 \times 1.0)^{2}+\left(8.0^{2} \times 1.0\right)^{2}}=64.1 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

Answers:

$8.0 \mathrm{rad} / \mathrm{s}$
158.6° with the horizontal
$64.1 \mathrm{~m} / \mathrm{s}^{2}$
Answer provided by https://www.AssignmentExpert.com

